Genetic evidence for an essential oscillation of transmembrane-spanning segment 5 in the Escherichia coli ammonium channel AmtB.
نویسندگان
چکیده
Ammonium channels, called Amt or Mep, concentrate NH(4)(+) against a gradient. Each monomer of the trimer has a pore through which substrate passes and a C-terminal cytoplasmic extension. The importance of the C-terminal extension to AmtB activity remains unclear. We have described lesions in conserved C-terminal residues that inactivate AmtB and here characterize 38 intragenic suppressors upstream of the C terminus ( approximately 1/3 of total suppressors). Three that occurred repeatedly, including the previously characterized W148L at the pore entry, restored growth at low NH(3) to nearly wild-type levels and hence restored high activity. V116L completely restored function to two of the mutant proteins and, when separated from other lesions, did not damage wild-type AmtB. A179E notably altered folding of AmtB, compensated for all inactivating C-terminal lesions, and damaged wild-type AmtB. V116L and A179E lie at the cytoplasmic end of transmembrane-spanning segments (TM) 3 and 5, respectively, and the proximal part of the C-terminal tail makes intimate contacts with the loops following them before crossing to the adjacent monomer. Collectively, the properties of intragenic suppressor strains lead us to postulate that the C-terminal tail facilitates an oscillation of TM 5 that is required for coordinated pore function and high AmtB activity. Movement of TM 5 appears to control the opening of both the periplasmic entry and the cytoplasmic exit to the pore.
منابع مشابه
Genetic evidence for an essential oscillation of transmembrane spanning segment 5 in the E . coli ammonium channel AmtB
متن کامل
Epistatic effects of the protease/chaperone HflB on some damaged forms of the Escherichia coli ammonium channel AmtB.
The Escherichia coli ammonium channel AmtB is a trimer in which each monomer carries a pore for substrate conduction and a cytoplasmic C-terminal extension of approximately 25 residues. Deletion of the entire extension leaves the protein with intermediate activity, but some smaller lesions in this region completely inactivate AmtB, as do some lesions in its cytoplasmic loops. We here provide ge...
متن کاملIn vivo functional characterization of the Escherichia coli ammonium channel AmtB: evidence for metabolic coupling of AmtB to glutamine synthetase.
The Escherichia coli AmtB protein is member of the ubiquitous Amt family of ammonium transporters. Using a variety of [14C]methylammonium-uptake assays in wild-type E. coli, together with amtB and glutamine synthetase (glnA) mutants, we have shown that the filtration method traditionally used to measure [14C]methylammonium uptake actually measures intracellular accumulation of methylglutamine a...
متن کاملInhibitory complex of the transmembrane ammonia channel, AmtB, and the cytosolic regulatory protein, GlnK, at 1.96 A.
Ammonia conductance is highly regulated. A P(II) signal transduction protein, GlnK, is the final regulator of transmembrane ammonia conductance by the ammonia channel AmtB in Escherichia coli. The complex formed between AmtB and inhibitory GlnK at 1.96-A resolution shows that the trimeric channel is blocked directly by GlnK and how, in response to intracellular nitrogen status, the ability of G...
متن کاملMembrane topology of the Mep/Amt family of ammonium transporters.
The Mep/Amt proteins constitute a new family of transport proteins that are ubiquitous in nature. Members from bacteria, yeast and plants have been identified experimentally as high-affinity ammonium transporters. We have determined the topology of AmtB, a Mep/Amt protein from Escherichia coli, as a representative protein for the complete family. This was established using a minimal set of AmtB...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics
دوره 183 4 شماره
صفحات -
تاریخ انتشار 2009